一文讲透工厂化水产养殖水处理技术
首页
阅读:
admin
2019-08-16 13:51

  : 中国水产频道报道,工厂化水产养殖的水处理,主要处理水体中的废弃物,包括由于投喂饵料而引起的残饵、未消化吸收的营养成分和代谢排泄物等。养殖鲑鳟鱼类,饲料中的13%蛋白质、8%的脂肪、40%的碳水化合物、17%的有机 ...

  中国水产频道报道,工厂化水产养殖的水处理,主要处理水体中的废弃物,包括由于投喂饵料而引起的残饵、未消化吸收的营养成分和代谢排泄物等。养殖鲑鳟鱼类,饲料中的13%蛋白质、8%的脂肪、40%的碳水化合物、17%的有机质、50%灰粉和23%的干物质被鱼类作为代谢物排入水中,既有可溶性物质,如氨氮、硝酸盐、亚硝酸盐等,也有固体物和悬浮物,有些物质的积累会对养殖鱼类产生生理影响和毒性作用。

  因此,从养殖水体中去除或转化这些养殖废弃物,保持养殖水体的水质质量,对工厂化养殖鱼类的健康、快速生长是非常重要的。

  工厂化水产养殖水体的处理主要包括:增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)和曝气(去除二氧化碳等)、消毒、脱氮等处理过程,其中悬浮物和氨氮去除是需要解决的主要技术难点。

  养殖水体中的悬浮物及其特性:工厂化水产养殖中的悬浮物主要由于饵料的投喂而引起。在一次性过流养殖水体试验中,根据饵料投喂量的不同,其含量在5毫克~50毫克/升左右。在饲料系数0.9-1.0情况下,鱼体每增重1千克就会产生150克~200克悬浮物。作为循环使用的养殖水体,悬浮物在水中的积累是非常迅速的。这些基础实验数据是进行悬浮物处理的基本参数。

  养殖水体中鱼类的固体排泄物,在正常代谢的情况下,大部分以悬浮物的形式存在于水体中。在流动的养殖水体中,悬浮物有64%是小于30微米的颗粒。悬浮物的比重略大于水,颗粒小、流动性好、有一定的黏附性,在有水流的条件下呈悬浮状态。

  从养殖水体中去除30微米以下的悬浮物,一直是工厂化水产养殖设计研究的重要方向。养殖水体中的悬浮物的积累,使水体浑浊,影响养殖鱼类鳃体的过滤和皮肤的呼吸,增加鱼类胁迫压力,恶化水质、消耗水中的溶解氧。工厂化水产养殖过程中及时清除养殖水体中的悬浮物是非常必要的。

  (1)固定式过滤床,固定过滤床一般由鹅卵石、粗砂和细砂三层过滤组成,根据其工作水流的不同可分为喷水式滤床和压力式滤床,是一种比较原始的过滤方式,具有过滤效果好的特点,可过滤90%左右的悬浮颗。其应用难度在于设备庞大、效率低、反冲困难。

  (2)滤网过滤,滤网过滤主要是细筛网进行悬浮物的过滤,其中液力驱动旋转式过滤转筒是一项新技术,用网目为60微米的筛网,可过滤36%~67%的悬浮物。其中,改变其结构设计、增加过滤面积、减少尺寸和反冲用水是进一步研究的重点。

  (3)浮式滤床,浮式滤床应用比水比重小的塑料球作为过滤介质,浮球直径为3毫米左右,过滤100%的30微米以上、79%的30微米以下的悬浮物颗粒可获得很好的过滤效果。但是,养殖水体中的悬浮物具有结块的特性,为了防止反冲时堵塞和较好的过流量,浮球生物滤器需要频繁的反冲。为了改善其应用效果,必须进一步研究防止堵塞的结构和方法。

  (4)自然沉淀处理,自然沉淀技术是应用鱼池特殊结构或沉淀池,使悬浮物沉淀、集聚并不断排出,设计良好的沉淀池可去除59%~90%悬浮物。其中,设计的关键是确定悬浮物的沉降流速,有资料表明,对于沉淀池处理,过流流速应低于4立方米/分,适宜流速为1立方米/分;单位面积的流量为1.0立方米~2.7立方米/平方米·小时。自然沉淀虽然具有较好的效果,但是由于低流速限制了循环的流量,会减少养殖密度和养殖效率。

  (5)气泡浮选处理,气泡浮选处理的原理是通过气泡发生器持续不断在水中释放气泡,使气泡形成象筛网一样的过滤屏幕,并利用气泡表面的张力吸附水中的悬浮物。产生微小气泡(直径为10微米~100微米),可有效去除水产养殖水体中的悬浮物。气泡越小,效率越高。因此,研究产生微小气泡的发生装置,是该项技术应用的关键。

  养殖水体中的氨氮及其特性:工厂化养殖水体中的氨氮主要是由于养殖鱼类的代谢、残饵和有机物的分解而引起。一次性过流试验表明,高密度流水养殖排水中的氨氮浓度一般为1.4毫克/升左右。饲料质量的影响更是直接的,大约有40%饲料蛋白的氮被鲑鳟鱼类转化成氨氮(NH3和NH4+),在饵料系数为1.0的情况下,鲑鳟鱼类每增长1千克就会产生33克氮。根据饲料蛋白的含量不同,可用不同的方法计算鱼类的氨氮排量,蛋白为超过40%时,氨氮(毫克)=投饲量(克)×30;蛋白质在30%~40%时,氨氮(毫克)=投饲量(克)×25,蛋白低于30%时,氨氮(毫克)=投饲量(克)×20。养殖鱼类排泄的氨氮中,大约有7%~32%的总氮是包含在悬浮物中,大部分溶解于养殖水体中,分别以离子铵NH4+和非离子氨NH3的形式存在,并且随着pH值的变化而相互转化。研究物理、化学和生物的氨氮处理先进技术和有效方法,是工厂化水产养殖的重要课题。氨氮在养殖水体中的积累会对鱼类产生毒性作用,其中非离子氨对鱼类毒性作用很大。工厂化养殖水体的氨氮总量一般不应超过1毫克/升,非离子氨不应超过0.02毫克/升(GB11601-2000)。由于离子铵NH4+和非离子氨NH3在不同pH值条件下相互转换,因此在控制养殖水体氨氮积累的同时,应注意pH值的调节。

  空气吹脱,空气吹脱的原理是应用气液相平衡和介质传递亨利定律,在大量充气的条件下,减少了可溶气体的分压,溶解于水体中的氨NH3穿过界面,向空中转移,达到去除氨氮的目的。空气吹脱的效率直接受到pH值的影响,在高pH值的条件下,氨氮大部分以非离子氨的形式存在,形成溶于水的氨气;在pH值为11时,空气吹脱可去除95%的氨氮,在正常养殖水体也可获得一定的效果。

  空气吹脱应用的关键是pH值的调整,使处理过程既能提高处理的效率,又能适应养殖鱼类对水体pH值的要求。同时,空气吹脱需要空气的流量大,在低温下水温易受影响。

  离子交换吸附,离子交换吸附是应用氟石或交换树脂对水体中的氨氮进行交换和吸附。氟石的吸附能力约为1毫克/克,设计适宜可吸附95%的氨氮,在达到吸附容量后,可用10%的盐水喷林24小时进行再生,重复使用(er2001)。在工厂化养殖中应用氟石有较好的效果,但其再生操作烦琐、时间长。有些研究利用氟石作为生物处理的介质,在氟石上接种硝化细菌,达到提高生物处理效率的目的(OriLahav,1997)。

  生物处理,生物处理是利用硝化细菌、亚硝化细菌和反硝化细菌对水中的氨氮进行转化和去除。亚硝化细菌把氨氮转化为亚硝酸盐、硝化细菌,把亚硝酸盐转化为硝酸盐。如果进行彻底脱氮处理,可利用反硝化细菌进行处理。由于反硝化过程是在厌氧条件下(溶解氧低于1毫克/升)进行,应用于水产养殖有一定的困难。研究表明,硝酸盐对鱼类的影响很小,一些养殖鱼类可抵抗大于200毫克/升浓度的硝酸盐。因此,水产养殖水体的处理,很少应用反硝化过程。生物处理具有投资少,效率高的特点,受到广泛的关注和应用。

  有资料显示,应用硝化和亚硝化细菌附着浮球进行氨氮处理,氨氮的转化率为380克/立方米·天,饵料负荷能力为32千克/立方米·天。但是,硝化细菌的最佳生长温度在30℃以上,温度降低其活性降低,处理能力下降,低于15℃已经很难利用。研究低温下优势细菌的培养和保持技术,应该是研究的重要方向。

  臭氧氧化处理,臭氧作为消毒和去除悬浮物在水产养殖上获得广泛应用,其有一定的氨氮氧化效果。研究表明,臭氧的直接氧化可去除水体中氨氮的25.8%,在加入催化剂的条件下,可大幅度提高其氧化效率。在工厂化水产养殖水体中加入催化剂,也可大幅度提高氧化效率,可去除50%左右的氨氮。

  臭氧氧化氨氮的方法在水产养殖上的应用还有待深入研究。由于臭氧氧化氨氮可把氨氮中的氮直接转化为氮气,去除了水质恶化的营养源,是一种有效的处理方法。利用催化方法提高臭氧氧化氨氮的效率,应用于养殖水体的处理,是水产养殖水体氨氮处理的一条新途径。

  同时,臭氧具有消毒杀菌和沉淀悬浮物的作用,如果能提高其氧化氨氮的效率,臭氧在处理养殖水体上的综合利用将会有广泛的应用前景,是重点研究的课题。

  电渗析处理,电渗析处理是极性电场技术和分子筛膜分离技术结合的处理技术,其工作原理是水体在电场的两极流动时,水中的带电离子在直流电场的作用下定向移动,阴离子透过阴膜进入阴离子集水槽,阳离子通过阳膜进入阳离子集水槽,从而可把水体中的离子氨去除。

  由于水体中的氨氮在pH值为7的中性条件下,非离子氨仅为氨氮总量的0.55%,95%以上是离子氨,所以电渗析处理可获得好的处理效果。电渗析处理具有分离效率高、装置紧凑、自动化容易的特点,已经广泛地应用于化工、食品、冶金和航天领域的水处理工程。结合工厂化水产养殖实际的养殖水体处理的电渗析设备,是工厂化水产养殖设施研究的新领域。

  由于电渗析处理中的分离膜有很强的选择性,容易受悬浮物的堵塞和有机物的污染,需要频繁的清洗,容易损坏,增加成本。因此,研究高强度膜材料是发展的趋势。

  饵料要求,工厂化水产养殖饲料营养要全,要考虑循环使用水体中微量元素的缺乏因素。要用高效颗粒饲料,饵料系数一般应在1~1.2左右,减少鱼类排泄带来的水处理问题。要使用生产两个月以内的新鲜饲料,尽量减少饲料变质带来的营养疾病,任何变质饲料绝对不能用于工厂化养殖生产。饲料形状应该完整,循环流水养殖中的任何不适口碎料都将被水流冲走,成为水质的污染源,增加水处理的负担。

  投饵,由于工厂化养殖中的养殖条件调整到鱼类最佳的生长环境,投饵应该根据鱼类不同阶段的最佳生长速度投饵,从而达到最快生长的目的。投饵时间应该掌握多次投喂,每次少量的原则,以均衡系统处理设备的各种负荷(有资料建议每30分钟投饵一次)。

  工厂化水产养殖中疾病预防是非常重要的,要确保不能有疾病发生,避免全军覆没的损失。主要采取以下措施:

  4.在养殖过程中注意环境变化对鱼类的胁迫压力。包括各种水质的干扰波动、水温的变化等。胁迫压力大,将使鱼类的抗疾病能力降低。

  整个系统的管理是一项复杂的工作,要保证系统各个部分的正常运转,重点是监测系统水质的变化情况。

  系统管理应该注意的问题:要有备用电源或备用氧气罐,以防停电能够及时补充水体溶解氧。溶解氧是系统停止运转时保证鱼类生命的主要因子,也是生物处理设备能够保持再运转的基本条件。一旦停止循环和供氧,鱼类在15分钟~20分钟就会出现缺氧死亡;同时生物膜因缺氧会出现细菌的死亡而脱落,需要重新挂膜,约需要15天~35天的时间,打乱整个生产计划。

  要经常检查养殖池水位是否固定不变,如有减少应检查管路是否被污物堵塞。水体交换量的减少同样会引起缺氧。

  要在水体中加入一定量的NaCL,保持Na?CL含量在0.02%~0.2%范围内。缓解亚硝酸盐的毒性和渗透压力。

  注意养殖鱼类产生的脱味现象,在循环式养殖中,这种现象是普遍存在的。一般情况下,在鱼类上市之前换上新水,降低温度、停喂几天到几个星期,就可以消除。

  要注意养殖鱼类的分级饲养,一般20天~30天要进行一次分级,把规格大小基本一致的鱼放入同池养殖。

  有害气体产生的原因及性质,工厂化养殖水体中的有害气体主要是鱼类代谢呼吸产生的二氧化碳气体,以微气泡的形式存在于水中。

  虽然二氧化碳气体难溶于水,在一定条件下二氧化碳气体可与水结合进行可逆反应形成碳酸。碳酸是弱酸,也会降低养殖水体的pH值,从而影响水质。其与水的结合反应为:

  碳酸极不稳定,在空气中很容易分解为水与二氧化碳。因此,采取措施使养殖水体充分与空气接触,就可及时去除养殖水体中的二氧化碳气体。

  不仅如此,水中的二氧化碳对鱼类也是非常有害的,二氧化碳气体含量超过20毫克/升时,养殖鱼类就会产生气体压力反应,表现为向水面或增氧设备集中,摄饲明显减少。

  (1)机械设备去除。利用增氧机或曝气设备,在养殖水体中形成上下交换的水流,使水体充分与大气接触,达到分解碳酸,去除二氧化碳的目的。

  (2)水力设计去除。在设计过程中,回水管和回水槽间留有一定高度的落差,使水流在回水过程中充分暴露在大气中,分解碳酸,去除二氧化碳。

  (3)充气去除。在水流通过的水道上设置微气泡释放装置,利用气泡相互积累的特性,使散布于水中的二氧化碳与释放的气泡结合,由气泡把二氧化碳带上水面,达到去除的目的。

  在工厂化水产养殖系统中,由于鱼类代谢产生的大量氨氮为硝化细菌提供了大量繁殖的生存条件,使得整个系统的管路、设施包括养殖池表面都产生了生物膜。硝化细菌的生长过程中,在消耗氨氮的同时,也产生酸性物质,从而降低了水体的碱度。特别是在有生物处理设备的条件下,pH值降低的就更加明显。pH为7.5的水体,封闭运转三天,pH就会降到6左右。同时,二氧化碳去除不及时彻底,也是pH值降低的一个重要原因。

  pH过低,不仅影响养殖鱼类的生长,而且会抑制硝化细菌和亚硝化细菌的活性,使生物处理失去作用。硝化细菌和亚硝化细菌在pH低于7时就会停止生长和繁殖,失去转化氨氮的作用。因此,适时监测和调空pH值是非常必要的。

  (1)化学调节,在应用生物处理的系统中,pH的调节只能采用化学调节的办法,可在水体加入Ca(OH)2和NaOH的办法调节。所加药量一般为投食率的17%~20%。

  (2)臭氧杀菌控制在不使用生物处理的系统,pH的调节可采用在水中释放适量臭氧的办法,利用臭氧杀死系统各个部分附着的生物,避免微生物的硝化作用。一般臭氧含量在0.1毫克/升,就可以有效杀微生物。

  (3)利用反硝化作用在系统中设置反硝化设备,使反硝化过程产生的碱性物质平衡硝化过程的酸性物质。不过,由于反硝化作用是在厌氧的条件下进行,水产养殖系统很难利用。

  工厂化养殖的自动监测与控制工厂化养殖的自动监测与控制自动监测和控制系统是封闭循环式工厂化水产养殖的保证条件。由于养殖密度大,水质变化快,水质控制不好容易引起事故的发生,造成生产损失。自动监测和控制参数主要包括水位、水温、溶解氧、浊度、盐度、pH、电导率、氨氮和硝酸盐等,通过监测和控制这些参数,把水质控制在养殖要求的范围内。

  在工厂化循环养殖中,由于冲洗、调节水质等要求,需要一定的水源补充,一般每天补水量约为总水量的10%,因此,应该备有补水水源和水泵。(